The Role of Backside Wear in Osteolysis

Gerard A. Engh M.D. Anderson Orthopaedic Research Institute Alexandria, Virginia

Disclosure

- Designer (Royalty income) DePuy A Johnson & Johnson Company
- Consultant on Knee Products for Smith & Nephew Orthopaedics
- General Research Funding Inova Health System and the U.S. Army Medical Research & Materiel Command and the Telemedicine & Advanced Technology Research Center
- Investor Alexandria Research Technology

Disclosures made in accordance with Anderson Orthopedic Research Institute Policy

Osteolysis was not reported with non-modular components of the 70s and 80s.

TKA Failure by Polyethylene Wear

- First reported-1988
- Metal-backed, non-modular PCA knee

Engh, JBJS August 1988

Osteolysis After TKA

- 16% incidence
- Modular metalbacked tibial component

Peters, JBJS 74A, 1992

What caused osteolysis in this patient?

- 39 year old,
 260 lb. park ranger
- TKA in situ: 4 Years

Articular Side Pristine and Baseplate Worn

What caused osteolysis in this patient?

69 year old nun
TKA *in situ* <u>3.5 years</u>

Articular-side
pittingBaseplate
burnishing

Clinical Experience Modular Tibial Trays

 Osteolysis can occur even when there is minimal visible wear on the articular side of the polyethylene

Retrieval Experience Modular Tibial Trays

 Backside wear *does* occur and may contribute to the debris that causes osteolysis

Where does debris come from?

the Articular surface

or

the *Modular* surface

? About Backside Wear

- Do modular interfaces move?
- What is the magnitude of motion?
- Do any locking mechanisms eliminate interface motion?
- Do locking mechanisms deteriorate with time *in vivo*?

Materials and Methods

- Nine different implant designs
- Mechanical testing-Instron

Mechanical Testing Protocol

- Mount tray in acrylic
- Precondition: 37° water bath for 2 weeks
- Clamp components in 2 individual frames
- Measure motion before resistance is encountered

Results

- All implants out of the box had a mean 90 microns of motion
- Wide variation within any implant type
- Wide range of motion for all implants

Do locking mechanisms become looser in vivo?

Do both snap-fit and tongue-ingroove become looser?

Study Group (N=29)

- 12 Postmortem implants (2 snap-fit, 10 tongue-in-groove)
- 17 Components from revision surgery (9 snap-fit, 8 tongue-in-groove)

Modular Tibial Insert Micromotion

Titanium Tray Average Surface Roughness: 3.79μ

 ISO recommended surface finish for articulating medical devices: 0.1μ

Backside Wear Gamma-in-Air

Backside Wear & Length of Implantation

- 55 retrieved inserts-4 designs
- Removal of stamped markings and poly protrusions correlated with time in vivo
- 2 to 4X wear rates in total hips

Backside Wear Fixed Bearing (Gamma-in-Air) 15 AMK implants In situ: 36-146 months (mean-91 months) Backside volumetric wear: 138 ± 95mm³ / Yr.

AORI retrievals Good Poly

- <u>Fixed</u> Bearing
 - 49 Sigma PFC inserts
 - Gamma in Barrier
 - In situ: 32 months
- <u>Mobile</u> Bearing
 - 23 LCS RP inserts
 - Gas Plasma
 - In situ: 29 months

Mobile & Fixed Bearing Articulating Surface Scores

Good poly (non gamma in air retrievals) No delamination

Is backside wear a problem with nonirradiated poly & with mobile-bearings ? **AORI retrievals**

- Fixed Bearing
- Mobile Bearing
- 49 Sigma PFC inserts - Gamma in Barrier
- 23 LCS RP inserts
- Gas Plasma
- In situ: 32 months
- In situ: 29 months

MB vs. FB **Backside Pitting**

- Pitting early for mobile bearing
- Similar pitting at >4 years

Mobile Bearing Tray

LCS Rotating Platform Tibial Tray

- Scratches go beyond the expected rotation of the knee suggesting 3rd body debris wear
 - Scratching on metal tray closely mimics scratching on inserts

Post Wear on PS Knees

31 Posterior Stabilized

γ in Barrier PFC Inserts

>4 years:
100% had deformation & <u>burn</u>ishing

Post contact may accelerate backside wear

- Why was wear not a problem with the IB & AGC implant?
- 1) Himont 1900 Compression molded less sensitive to oxidation
- 2) Non-modular interface eliminates backside wear

Conclusions

- Backside wear is a significant source of wear debris with both mobile and fixed bearing modular implants
- Industry standards are needed to minimize tibial component micromotion

For primary fixed-bearing TKA's consider:

Polished cobalt chrome baseplate

One-piece tibial component

