Do we rebuild a real ligament?

PD Dr med Jacques Menetrey
Unité d'orthopédie et de traumatologie du sport (UOTS)
Service de chirurgie orthopédique et traumatologie de l'appareil moteur
University hospital of Geneva, Geneva, Switzerland

Ligamentization

- Still a matter of debate

Basic science

Graft healing

- Inflammatory phase
 - Proliferative phase (4-12th wk.)
 - Ligamentization phase (12- ... th wk.)

Amiel et al. J Orthop Res 1986

Basic science

- Early healing phase
 - Central acellularity and necrosis
 - Influx of host cells
 - Inflammatory cells
 - Fibroblasts
 - Complete replacement of viable graft cells by host cells around 2-4 weeks in animal models
 - No revascularization

Kobayashi et al. Trans Orthop Res 2005

Basic science

- Proliferation phase (4-12 wks)
 - Increased cellularity with proliferation of fibroblasts - myofibroblasts
 - Loss and reformation of collagen crimp
 - Revascularization
 - Increased collagen type III / fibrinectin
 - Increase smaller diameter collagen fibrils
 - Increased GAG content

proliferative

reparative
Basic science: Proliferation phase (4-12 wks)

- Recellularization (4-12 wks)

Basic science: Revascularization (4-12 wks)

- Revascularization (4-12 wks)

Basic science: Proliferation phase (p-12 wks)

- Revascularization

Basic science: Ligamentization phase (12-... wks)

- Remodeling phase:
 - Structural and mechanical adaptation
 - Increased in collagen content
 - Non-reducible/reducible cross-link ratio increase

Kirkendall et al. J Orthop Res 1986
Scheffler et al. Arthroscopy 2008

Biology

- Favorable vascularization
- Cellular repopulation
- Matrix remodeling
- The ultimate small diameter collagen fibril orientation
- Final cross-sectional area of the graft

Original ACL versus graft

- Similar macro-morphology within 6 to 12 months
- More type III collagen in the graft
- Unimodal pattern of small collagen fibers
- Crimp frequency remain increased in the graft
- In animal model, graft strength could never surpass 50-60% of the intact ACL

Ahn et al. Arthroscopy 1995
Jackson MR, Crenshaw MB 1995
Scheffler et al. Curr Orthop 2000
Original ACL versus graft

- Collagen crimp pattern
- Sheep model
- Polarized light microscopy x200

In human

- Some healing phases:
 - Graft necrosis, recellularisation, revascularization, ligamentization
 - Remodeling is reduced
 - Less necrosis (no more than 30%)
 - Not all intrinsic grafts cells replaced by extrinsic cells
 - Large area of normal collagen alignment and crimp pattern
 - No excessive revascularization

Biological process

- In animal models, the graft undergoes a process of adaptation rather than full restoration of the intact ACL's biological properties.

 - Law of functional adaptation
 - William Bauce:
 - An organ will adapt itself structurally to an alteration, quantitatively and qualitatively in function

What we know!

- MECHANICAL ENVIRONMENT
 - Placement of the graft
 - Tensioning
 - Rehabilitation
 - Patient compliance
 - It takes time...

How about "bundles"

- V. H. basketball player 29 y old
 - ACL BPTB
| V. H. basketball player 29 y old ACL BPTB, 5 years post-ACL rec |
| V. J. 38 y old capoeira, 4 years post ACL-rec, partial ACL rupture |

How about “bundles”

- V. H. basketball player 29 y old ACL BPTB, 5 years post-ACL rec
- V. J. 38 y old capoeira, 4 years post ACL-rec, partial ACL rupture

In summary

- The ligamentization process is an adaptative transformation of the graft which does not lead to a full restoration of the intact ACL’s biological properties.
- Biological response is related to the biomechanical and biochemical environment into which the graft is placed.
Epidemiology
- 1 ACL reconstruction/2000 inhabitants in US
- 200'000 ACL rupture/year in US
- 120'000 TKR/year
 Steinert et al Orthop Res Society San Francisco 2008
- 31'000 ACL reconstructions/year in France
 Symposium French Society of Arthroscopy Lyon 2007

ACL failure
- Functional instability with sports or activities of daily living
- Increased pain
- Loss of motion
- Recurrent episodes of giving way
- SSD diff. > 5 mm, Lachman et pivot positive

Graft necrosis
- Released of cytokines
 - Matrix metalloproteinase (MMP-3)
 - Tissue inhibitor metalloproteinase-1 (TIMP)-1
 - Interleukin-6 and 8 (IL-6, IL-8)
 - Tumor necrosis factor alpha (TNF-α)
 - IL-1
 - Nagash et Orthop Med 2006
- Extended necrosis
- Collagen disturbance
- Myxoid degeneration
- Interfering process of revascularization

Vascularization
- Overtensioning of the graft
- Patients habits:
 - Smoking, cocaine consumption
 - Diabetes
- Choice of the graft
- Hypoxia
 - Period of avascular necrosis – decrease in VEGF expression

Cells repopulation
- Vascularization
- GF cascade: TGF-β, b-FGF, PDGF
- Age?
- Genetic background?
 - Fast healer?
 - Slow healer?
 - Kuroda et al KSSTA 2000
Matrix remodeling

- GF cascade: TGF-β, b-FGF, PDGF
- Vascularization
- Cell repopulation
- Age ?
- Genetic background ?
 - Fast healer ?
 - Slow healer ?

Kurita et al. KSSTA 2000