

Jumper's knee: etiology, diagnosis, classification

Pr Elvire Servien, MD PhD; Dr H Gokhan KARAHAN

Centre Albert Trillat Hôpital de la Croix-Rousse Val d'isère knee course 2012

Jumper's knee? Definition

Blazina et al: 1973 used the term jumper's knee used (patellar « tendinopathy », patellar « tendinosis », patellar « tendinitis »)

insertional tendinopathy seen in skeletally mature athletes

Blazina ME et al;. Jumper's knee. Orthop Clin North Am. Jul 1973;4(3):665-78.

Jumper's knee: etiology

- · the most common overuse injury
- volleyball (28%)
- 40% of professional players have experienced symptoms of jumper's knee during their careers

Jumper's knee: etiology

- Repetitive stress on the patellar or quadriceps tendon during jumping
- an injury specific to athletes participating in jumping sports (basketball, volleyball, or high or long

- ok JL et al. Anthropometry, physical performance, and ultrasound patellar tendon normality in elite junior basketball players: a cross-sectional study. *Br J Sports Med*. Apr

Jumper's knee: etiology

- · Functional overload
- Repetitive load on the extensor tendon apparatus, during takeoff and landing
- Cook JL et al. Anthropometry, physical performance, and ultrasound patellar tendon abnormality in elite junior basketball players: a cross-sectional study. Br J Sports Med. Apr 2004;38(2):206-9 Cook JL et al. Reproducibility and clinical utility of tendon palpation to detect patellar tendinopathy in young basketball players. Victorian institute of Sport tendon study group. Br J Sports Med. Feb 2001;35(1): 65-9.

Jumper's knee: etiology

jumping sports

- Volleyball , Basketball , High jump, long jump and triple jump
- Running, Handball, Soccer, Climbing
- Tennis
- Gymnastics
- Weight-lifting
- Cycling
- Skiing ,Ballet dancing

Intrinsic § Extrinsic risk factors

Jumper's knee: Intrinsic risk factor

- inflexibility of the hamstrings and quadriceps
- morphotype
- increased Q angle
- patella alta /baja
- limb-length discrepancy

The influence of the lower patellar pole in the pathogenesis of chronic patellar tendinopathy

Olaf Lorbach · Andreas Diamantopoulos · Klaus-Peter Kammerer · Hans H. Paessler

Jumper's knee: Intrinsic risk factor

- Patellar hypermobility, Abnormal patella tracking, Increased length of the patella, Impingement of the inferior pole of the patella, long patellar tendon
- Hyperlaxity syndrome
- Reduced ankle dorsiflexion range, hyperpronation of the foot
- · Iliotibial band tightening
- · Knee instability
- · Pelvis and hip disease
- · Muscular imbalance or insufficiency
- · Increased rotation of femur and tibia

Jumper's knee: Extrinsic risk factor

- Hard court surfaces
 (Beach volley /"indoor" volleyball)
- · excessive training volume, overtraining

Jumper's knee: Extrinsic risk factor

- · Hard Playing on hard surface
- · More than four training sessions per week
- Height and weight: Increased height, increased weight, increased BMI
- Excessive load on the body (type of movement, speed of movement, number of repetitions, footwear)
- Training errors :too long distance, too high intensity, too fast progression, and too much hill work
- Monotonous, asymmetric and specialized training only

Diagnosis Physical Examination

- tenderness at the inferior patellar pole
- Functional strength examination subtle weakness
- Pain (during active quadriceps contraction): extension of the knee against resistance

Diagnosis Physical Examination

- Hamstring and quadriceps tightness
- Normal ligamentous stability of the knee during testing
- Normal knee range of motion
- Normal hip and ankle examination

Differential Diagnosis

- •Sinding-Larsen-Johannson's disease
- Osgood-Schlatter's disease
- •Chondromalacia patella
- prepatellar or infrapatellar bursitis
- Synovial plicae

Diagnosis

Imaging is not necessary to make the diagnosis

- Plain x-ray
- •Colour Doppler US
- Ultrasonography
- •MRI

Radiological signs

Profile view: non-specific abnormalities

- soft-tissue swelling
- periosteal reaction
- calcification in the patellar tendon
- elongation of the inferior pole of the patella

Diagnosis

- Colour Doppler US : signs of hypervascularity
- Ultrasonography tendon abnormalities in both symptomatic and asymptomatic athletes

Fritschy D, de Gautard R. Jumper's knee and ultrasonography. Am J Sports Med. 1988 Nov–Dec; 16 (6):637–

US § PD

- Ultrasonography (US) is a good method to study the tendon structure
- Power Doppler (PD) and colour Doppler techniques can be used to study blood flow in the tendon

Jumper's knee: tendonitis

neovascularisation in the area with structural tendon changes.

neovessels = deterioration of the condition ?

The MRI signs

➤ signs of patellar tendonitis abnormalities

Abnormal signal +++

Classification

- Depending on the duration of symptoms
- 4 Stages
- · Blazina / Leadbetter

Blazina Classification

Classification of patellar tendonitis according to Blazina et al (1973)

- Stage 1: Pain only after sports
- Stage 2: Pain at the beginning of sports disappearing after a warm-up but reappearing with fatigue
- Stage 3 : Constant pain at rest and with activity
- Stage 4 : Complete rupture of the patellar tendon

Blazina ME, Kerlan RK, Jobe FW, Carter VS, Carlson GJ. Jumper'sknee. Orthop Clin North Am 1973;4:665-78

Blazina's classification modified by Lian et al.

- Stage I Pain at the infrapatellar or suprapatellar region after practice or after an event.
- Stage II Pain at the beginning of the activity, disappearing after warm-up and reappearing after completion of activity
- Stage III a Pain during and after activity, but the patient is able to participate in sports at the same level
- Stage III b Pain during and after activity and the patient is unable to participate in sports at the same level
- Stage IV Complete rupture of the tendon

Leadbetter's Classification

- Stage 1 Pain occurs more than activity, spontaneously regresses within several hours, present for less than 2 weeks, normal activity, normal tests results
- Stage 2 Pain during and after activity which does not regress, present for 2 to 6 W, localized pain, few or no signs of inflammation
- Stage 3 Persistent pain several days after activity stops, reoccurs rapidly when activity begins again, seriously limiting functional capacities and present for more than 6 W with signs of inflammation
- Stage 4 Constant pain affecting daily activities, preventing all athletic activity

Leadbetter, W.B.: "Cell-matrix response in tendon injury", Clin Sports Med, 11:533-578, 1992

Classification Leadbetter et coll.

Stage	Pain	Fonction	Duration	Clinical Exa
Stage	after activity		< 2 W	
I	< 24H	=		Normal
Stage	During and after activity	+/-	2-6 W	localized pain
Stage III	Persistent several Ds after activ.	Limited	> 6 W	Pain signs of inflammat
Stage IV	Constant	Sport impossible	> 6 W	local § regional si (atrophy, weaknes

Conclusion

Prevention
Athlete's education
Diagnosis is clinical