TKA in the Severe Varus Knee # Myles RJ Coolican, FRACS Val d'Isere Knee Course January 2018 Royal North Shore Hospital #### The Severe Varus Knee - * Preoperative Assessment - * Surgical Technique - * Implant Selection - * Literature - * Conclusions #### "What is Severe?" - * Fixed deformity - * Mechanical axis > 10 degrees varus - * Lateral Thrust - * Potential Difficulties with: #### Bone - * Defects - * Deformity #### Soft tissues - * Lateral stretching - * Medial tight - * Ligament Balancing #### Goals of TKR - * Objective - * Neutral /near neutral alignment - * Stable & well balanced - * Good ROM - * Subjective - * Happy patient - * Pain free with unrestricted function ### Surgeons challenges - * Is it possible to correct an extra articular deformity within confines of the ligamentous attachments AND balance the joint - * Will bony cuts remove collateral attachments? - * Should an extra-articular deformity be corrected prior to or at the same time ### Challenges with Bone Varus deformity Intraarticular Extraarticular # Extraarticular Deformity Common Causes Prior HTO- collapse Prior Trauma Congenital Bowing #### Extraarticular Deformity Common Causes Paget's Disease Hypophosphataemic Rickets #### Implications of Extraarticular Deformity - * Adds to the intraarticular deformity - * May not be possible to compensate with bony cuts - * Reduced access to medullary canal due to distorted anatomy or pre-existing implants - * IM guides and stems Full Length Radiographs - * Should be routine in: - * Severe deformity - * History of previous trauma - * Assess severity of deformity and relative contribution of: - * Extraarticular - * Intraarticular - * Estimate bony cuts & resultant gaps - * Determine if osteotomy required ## Full Length Radiographs - * Should be routine in: - * Severe deformity - * History of previous trauma - * Assess severity of deformity and relative contribution of: - * Extraarticular - * Intraarticular - * Estimate bony cuts & resultant gaps - * Determine if osteotomy required #### Femoral Deformity: Preoperative Planning - * Deformity assessment on full length radiographs - * Proposed distal femoral cut is drawn perpendicular to the mechanical axis of the femur - * If distal cut likely to compromise the attachment of the lateral collateral ligament on the lateral epicondyle, a corrective osteotomy is considered #### Femoral Deformity: Preoperative Planning - Femoral Osteotomy Indicated - * Staged or Combined Site of Deformity Age of Patient Surgeon Expertise Femoral Deformity: Preoperative Planning * Femoral Osteotomy Indicated * Staged or Combined Site of Deformity Age of Patient Surgeon Expertise #### Tibial Deformity: Preoperative Planning - * Consider tibial osteotomy - * Distal tibial axis does not pass through tibial plateau - * Deformity > 30° - * Deformity close to the joint line # Indications for Correction of Extraarticular Deformity - * Deformity compromises TKR technique - * Ligament attachments - * Large discrepancy in cuts - * Compromises Balancing - * Younger patients in whom knee varus is mostly due to extraarticular deformity # Role of Navigation in Extra-articular deformity - * Navigation establishes mechanical axis irrespective of extra-articular deformities - * Bypasses canal - * Intramedullary guides are not required with navigation - * Accurate assessment of gap imbalance #### KNEE #### Navigation-assisted total knee arthroplasty in knees with osteoarthritis due to extra-articular deformity Fabio Catani · Vitantonio Digennaro · Andrea Ensini · Alberto Leardini · Sandro Giannini - * 20 patients with mean varus deformity of 10.4° ± 8.3° preop - * Results: Mean alignment post-op: 0.8 ± 1.2 in varus. KSS score increased from 48 to 91 postoperatively (p<0.05) Mean range of motion improved from a 7–74 mean range preoperatively to 0–94 post-operatively. Navigation is an effective technique for knees with extraarticular deformities #### The Varus Knee: Other Issues - * Medial Contracture - * Lateral Laxity - * Flexion deformity - * Medial bone erosion #### Surgical Technique - * Routine Bony Cuts (Navigation) - * Conservative medial - * Gap Balancing Assessment - * Medial soft tissue release - * Correction of sagittal plane deformity - * Flexion Contracture - * Management of Tibial bone defect #### Medial Soft Tissue Release - * Osteophytes - * MCL - * Deep - * Superficial - * Posteromedial Capsule - * Semimembranosus - * Pes Anserinus - * Other techniques #### Medial Release: Routine Aspects - Release of Deep MCL sufficient to perform bony cuts - Exposure & Removal of Osteophytes # Medial Release: Supplementary Techniques - * Release of Posteromedial Capsule - * Tibial side - * Tight in extension - * Release of Superficial MCL - * Distal Elevation or "Pie-Crust" - * Release of Semimembranosus - * Posteromedial tibia - * Residual tightness in extension ### Pie crusting of MCL With the trial implants in situ, valgus stress is applied to the knee and the tight fibres of MCL are released using 19 G needle ^{*}Bellemans, Johan. "Multiple needle puncturing: balancing the varus knee." Orthopedics 34.9 (2011): 693. #### Subperiosteal Release of MCL Subperiosteal release of MCL is as an alternative to Pie Crusting of MCL NB Avoid complete release causing instability ### Summary of Sequence - * Standard Bony cuts - * Deep MCL Release & Osteophyte Removal - * Gap Assessment with Blocks / Navigation - * Posteromedial Capsule - * Superficial MCL - * Semimembranosus #### Correction of Sagittal Plane Deformity - * Usually associated with flexion deformity - * Strategies include: - * Removal of posterior osteophytes - * Release posterior capsule - * Downsize femur - * Increased distal resection - * NB Correct varus deformity prior to performing additional distal femoral resection - * Occasional hyperextension deformity - * Conservative distal resection #### Management of Tibial Bone Defects #### Management Depends on: - Size of defect - Depth - % Surface Area - Age - Contained vs Uncontained <5 mm • Filling of the defect with cement ≥5mm - Bone grafting/ metal augments - Unloading of the defect with stemmed tibial implant Consider Downsizing Tibial Component Cut in slight varus #### "Reduction Osteotomy" of Proximal Tibia - * Principle: Excision of postero-medial flare of tibial plateau in order to decompress the medial structures. - * Indication: Residual varus >2° after adequate medial release. #### Technique of reduction osteotomy - Downsizing the tibial base plate - Lateralization of base plate - •Resection of uncovered medial bone Reduction osteotomy can achieve deformity correction in a predictable manner using the "2-mm excision for 1° degree correction" formula especially in knees with <15° preoperative varus deformity Research Institute *Dixon, M. C., et al. "The correction of severe varus deformity in total knee arthroplasty by tibial component downsizing and resection of uncapped proximal medial bone." The Journal of Arthroplasty 19(1): 19-22. #### Total Knee Arthroplasty for Profound Varus Deformity Technique and Radiological Results in 173 Knees with Varus of More Than 20° Arun B. Mullaji, FRCS Ed, MCh Orth, MS Orth, D Orth, DNB Orth, Vinod Padmanabhan, MS Orth, and Gaurav Jindal, MS Orth - Equivalent Protocol & Sequence - In all cases: - Reduction Osteotomy PM Tibial Flare - Posteromedial Release - Deep MCL & Semimembranosis - Superficial MCL partially detached in 4 and completely in 2 cases → instability - Pes detached in 3 - Tibial Osteotomy in 6 - 1.7% Tibial Loosening ### Type of Implant - * Surgeon Preference - * PCL Contracture associated with deformity - * PCL release assists with deformity correction & balancing - * Scuderi et al J Arthroplasty 2007 - "Severe varus deformities are associated with fixed flexion deformity with is easier to correct with excision of the PCL and using a posterior stabilised implant" #### Other Issues - * Leg Lengths - * Preoperative counselling - * Particularly unilateral surgery - * Residual lateral laxity - * What is acceptable? - * Stable in extension - * Quantify with navigation - * Sekiya et al (2009) observed in large varus knees, large lateral ligamentous laxity immediately after surgery will diminish to a normal level by 3 months after surgery, provided proper valgus alignment is maintained. #### Severe Varus Knee: Summary - * Fixed Varus common - * Careful preoperative & intraoperative assessment - * Site of deformity - * Surgical Plan - * Be aware of all options - * Standard surgical algorithm - * Good outcomes #### Thank You